跳至主要内容

OpenVINO Backend

We will use this example project to show how to make AI inference with an OpenVINO model in WasmEdge and Rust.

Prerequisite

Besides the regular WasmEdge and Rust requirements, please make sure that you have the Wasi-NN plugin with OpenVINO installed.

Quick start

Because the example already includes a compiled WASM file from the Rust code, we could use WasmEdge CLI to execute the example directly. First, git clone the WasmEdge-WASINN-examples repo.

git clone https://github.com/second-state/WasmEdge-WASINN-examples.git
cd WasmEdge-WASINN-examples/openvino-mobilenet-image/

Download the model files in OpenVINO format and then run the inference application in WasmEdge.

# download the fixture files (OpenVINO model files)
./download_mobilenet.sh
wasmedge --dir .:. wasmedge-wasinn-example-mobilenet-image.wasm mobilenet.xml mobilenet.bin input.jpg

If everything goes well, you should have the terminal output:

Read graph XML, size in bytes: 143525
Read graph weights, size in bytes: 13956476
Loaded graph into wasi-nn with ID: 0
Created wasi-nn execution context with ID: 0
Read input tensor, size in bytes: 602112
Executed graph inference
1.) [954](0.9789)banana
2.) [940](0.0074)spaghetti squash
3.) [951](0.0014)lemon
4.) [969](0.0005)eggnog
5.) [942](0.0005)butternut squash

Build and run

Let's build the wasm file from the rust source code. First, git clone the WasmEdge-WASINN-examples repo.

git clone https://github.com/second-state/WasmEdge-WASINN-examples.git
cd WasmEdge-WASINN-examples/openvino-mobilenet-image/rust/

Second, use cargo to build the template project.

cargo build --target wasm32-wasip1 --release

The output WASM file is target/wasm32-wasip1/release/wasmedge-wasinn-example-mobilenet-image.wasm. Download the OpenVINO model files. Next, use WasmEdge to load the OpenVINO model and then use it to classify objects in your image.

./download_mobilenet.sh
wasmedge --dir .:. wasmedge-wasinn-example-mobilenet-image.wasm mobilenet.xml mobilenet.bin input.jpg

You can replace input.jpg with your image file.

Improve performance

You can make the inference program run faster by AOT compiling the wasm file first.

wasmedge compile wasmedge-wasinn-example-mobilenet.wasm out.wasm
wasmedge --dir .:. out.wasm mobilenet.xml mobilenet.bin input.jpg

Understand the code

The main.rs is the full example Rust source. First, read the image file and OpenVINO model file names from the command line.

let args: Vec<String> = env::args().collect();
let model_xml_name: &str = &args[1]; // File name for the model xml
let model_bin_name: &str = &args[2]; // File name for the weights
let image_name: &str = &args[3]; // File name for the input image

We use a helper function called image_to_tensor() to convert the input image into tensor data (the tensor type is F32). Now we can load the model, feed the tensor array from the image to the model, and get the inference output tensor array.

// load model
let graph = GraphBuilder::new(
GraphEncoding::Openvino,
ExecutionTarget::CPU
).build_from_files([model_xml_path, model_bin_path])?;
let mut context = graph.init_execution_context()?;

// Load a tensor that precisely matches the graph input tensor
let input_dims = vec![1, 3, 224, 224];
let tensor_data = image_to_tensor(image_name.to_string(), 224, 224);
context.set_input(0, TensorType::F32, &input_dims, tensor_data)?;

// Execute the inference.
context.compute()?;

// Retrieve the output.
let mut output_buffer = vec![0f32; 1001];
let size_in_bytes = context.get_output(0, &mut output_buffer)?;

In the above code, GraphEncoding::Openvino means using the OpenVINO backend, and ExecutionTarget::CPU means running the computation on the CPU. Finally, we sort the output and then print the top-5 classification results.

let results = sort_results(&output_buffer);
for i in 0..5 {
println!(
" {}.) [{}]({:.4}){}",
i + 1,
results[i].0,
results[i].1,
imagenet_classes::IMAGENET_CLASSES[results[i].0]
);
}

More Examples

There is also an example that using OpenVINO to do road segmentation ADAS. Welcome to give it a try. You are also welcome to contribute your own examples.